Metropolitan University, Sylhet Department of Computer Science and Engineering

Autumn Term Final Examination – 2020

Program: B.Sc. in CSE; Course: CSE 134: Data Structure Lab		
1	Time: 3.5 Hours Marks: 40	
	[All questions are mandatory.]	
1)	Write a recursive function to find the minimum element of an array.	10
2)	Write the code of the algorithm which will help you to traverse the cities of your country in a possibly shorter time. Explain the reason to use the algorithm briefly.	10
3)	You want to buy an online subscription from a website where the plans are shown to you in the order of fees of respective plans. How could you find your targeted plan for a particular fee?	10
4)	You can choose books based on their ratings. How could you find the best-rated book efficiently from a collection of books, given the ratings of the books?	10